
Mason A. Wirtz
@WirtzMason

Unit 4:
The tidier the better: Basics of coding
with the Tidyverse

R you ready?
IntRo to RStudio and R Markdown
for open data and reproducibility

Installing the tidyverse

Let's go ahead and install the package tidyverse

> install.packages(“tidyverse”)

> library(tidyverse)

The tidyverse package is a handy way of installing and
loading a lot of different packages at the same time

> library(tibble)

> library(readr)

> library(dplyr)

> library(magrittr)

> library(ggplot2)

You could also just load in
the individual packages
from the tidyverse
package, like so

Stuff we need to do with data (frames)

tidy up a data frame
create new variables
calculate summary statistics
extract model outputs

Why tidyverse?

Tibbles

Load in the data frame Vampires
> Vampires = read.csv("Vampires.csv")

> Vampires

Tibbles

And then coerce it into a tibble
> tibble(Vampires)

What differences

do we see?

Tibbles

Modern take on data frames:

Tibbles default to character vectors (rather than factor
vectors) à character vectors easier to manipulate

Only first 10 rows are displayed, saving head() function
calling time

Tibbles display row and column numbers (saves nrow()
and ncol() function calls

Tibble automatically displays how each column is coded

These are some small changes,

but they save you a lot of time

and typing in the long run.

Loading in tibbles from the getgo

Save yourself turning each data frame into a tibble:

> Vampires = read_csv("Vampires.csv")

Use the read_csv() function from the
readr package.

Manipulating data
(the good kind)

Useful functions in dplyr

filter()
select()
mutate()
group_by()
summarize()
summarize_at()

absolute powerhouse in manipulating data

Operators in data manipulation
Operator Description
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to

NOT to be confused with the assignment
operator (only one =)

These operators

are useful when

manipulating data

Manipulating data: filter()
Imagine we are working with our Vampires data frame and
we want to take a closer look at all the vampires who are
older than 100

Subset rows / observations

> Vampires %>%

filter(ageOfVampire > 100)

Manipulating data: filter()

> Vampires %>%

filter(ageOfVampire > 100)

Tibble (data frame)

Function Variable in
tibble

Operator + condition
The pipe: String together functions

Manipulating data: filter()

We can also filter the data frame according to two terms:

We want a data frame of vampires who are older than 100
AND still alive

> Vampires %>%

filter(ageOfVampire > 100, deadOrAlive == “Alive”)

When subsetting CHARACTER vectors,
make sure to put the condition in quotation
marks!!

Manipulating data: select()
If we want only select COLUMNS in a data frame
Say we want to select ONLY idVampire, gender and
ageOfVampire

Subset columns

> Vampires %>%

select(idVampire, gender, ageOfVampire)

Manipulating data: mutate()
Create new variables that are functions of existing variable(s)
Since the variable visitedCities is a count variable, maybe
we want to log transform the variable

Create new variable(s)

> Vampires %>%
mutate(visitedCitiesLogged = log(visitedCities))

Manipulating data: mutate()

> Vampires %>%
mutate(visitedCitiesLogged = log(visitedCities))

Tibble (data frame)

Function NEW
variable name

Assignment
operator

Variable from
Vampires

data frame

Manipulating data: summarize()
Collapses a data frame to a single row and summarizes it
according to the argument we supply it with
Say we want the mean age of all vampires

ageOfVampire
1
2
3
4
5

Summarize a group/variable

> Vampires %>%

summarize(mean = mean(ageOfVampire))

mean
3

Manipulating data: group_by()
Group variables consisting of factors and summarize these
grouped factors
We want to know the mean age of
the male and female vampires Group variables

by unique values

> Vampires %>%
group_by(gender) %>%
summarize(mean = mean(ageOfVampire)

